
1

Learning Hatching for Pen-and-Ink Illustration of Surfaces

EVANGELOS KALOGERAKIS
University of Toronto and Stanford University
DEREK NOWROUZEZAHRAI
University of Toronto, Disney Research Zurich, and University of Montreal
SIMON BRESLAV
University of Toronto and Autodesk Research
and
AARON HERTZMANN
University of Toronto

This article presents an algorithm for learning hatching styles from line
drawings. An artist draws a single hatching illustration of a 3D object. Her
strokes are analyzed to extract the following per-pixel properties: hatching
level (hatching, cross-hatching, or no strokes), stroke orientation, spacing,
intensity, length, and thickness. A mapping is learned from input geometric,
contextual, and shading features of the 3D object to these hatching prop-
erties, using classification, regression, and clustering techniques. Then, a
new illustration can be generated in the artist’s style, as follows. First, given
a new view of a 3D object, the learned mapping is applied to synthesize
target stroke properties for each pixel. A new illustration is then generated
by synthesizing hatching strokes according to the target properties.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]:
Picture/Image Generation—Line and curve generation; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—Geomet-
ric algorithms, languages, and systems; I.2.6 [Artificial Intelligence]:
Learning—Parameter learning

General Terms: Algorithms

Additional Key Words and Phrases: Learning surface hatching, data-driven
hatching, hatching by example, illustrations by example, learning orientation
fields

This project was funded by NSERC, CIFAR, CFI, the Ontario MRI, and
KAUST Global Collaborative Research.
Authors’ addresses: E. Kalogerakis (corresponding author), University of
Toronto, Toronto, Canada and Stanford University; email: kalo@stanford.
edu; D. Nowrouzezahrai, University of Toronto, Toronto, Canada, Disney
Research Zurich, and University of Montreal, Canada; S. Breslav, Univer-
sity of Toronto, Toronto, Canada and Autodesk Research; A. Hertzmann,
University of Toronto, Toronto, Canada.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2012 ACM 0730-0301/2012/01-ART1 $10.00

DOI 10.1145/2077341.2077342
http://doi.acm.org/10.1145/2077341.2077342

ACM Reference Format:

Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., and Hertzmann, A. 2012.
Learning hatching for pen-and-ink illustration of surfaces. ACM Trans.
Graph. 31, 1, Article 1 (January 2012), 17 pages.
DOI = 10.1145/2077341.2077342
http://doi.acm.org/10.1145/2077341.2077342

1. INTRODUCTION

Nonphotorealistic rendering algorithms can create effective illus-
trations and appealing artistic imagery. To date, these algorithms
are designed using insight and intuition. Designing new styles re-
mains extremely challenging: there are many types of imagery that
we do not know how to describe algorithmically. Algorithm design
is not a suitable interface for an artist or designer. In contrast, an
example-based approach can decrease the artist’s workload, when
it captures his style from his provided examples.

This article presents a method for learning hatching for pen-and-
ink illustration of surfaces. Given a single illustration of a 3D object,
drawn by an artist, the algorithm learns a model of the artist’s hatch-
ing style, and can apply this style to rendering new views or new
objects. Hatching and cross-hatching illustrations use many finely-
placed strokes to convey tone, shading, texture, and other quali-
ties. Rather than trying to model individual strokes, we focus on
hatching properties across an illustration: hatching level (hatching,
cross-hatching, or no hatching), stroke orientation, spacing, inten-
sity, length, and thickness. Whereas the strokes themselves may be
loosely and randomly placed, hatching properties are more stable
and predictable. Learning is based on piecewise-smooth mappings
from geometric, contextual, and shading features to these hatching
properties.

To generate a drawing for a novel view and/or object, a
Lambertian-shaded rendering of the view is first generated, along
with the selected per-pixel features. The learned mappings are ap-
plied, in order to compute the desired per-pixel hatching properties.
A stroke placement algorithm then places hatching strokes to match
these target properties. We demonstrate results where the algorithm
generalizes to different views of the training shape and/or different
shapes.

Our work focuses on learning hatching properties; we use exist-
ing techniques to render feature curves, such as contours, and an
existing stroke synthesis procedure. We do not learn properties like
randomness, waviness, pentimenti, or stroke texture. Each style is
learned from a single example, without performing analysis across

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:2 • E. Kalogerakis et al.

(a) artist’s illustration
(b) smoothed curvature directions

[Hertzmann and Zorin 2000]
(c) smoothed PCA axis directions

(d) smoothed image gradient
directions

(e) our algorithm,
without segmentation

(f) our algorithm,
full version

(g) results on new views and new objects

Fig. 1. Data-driven line art illustrations generated with our algorithm, and comparisons with alternative approaches. (a) Artist’s illustration of a screwdriver.
(b) Illustration produced by the algorithm of Hertzmann and Zorin [2000]. Manual thresholding of �N · �V is used to match the tone of the hand-drawn illustration
and globally-smoothed principal curvature directions are used for the stroke orientations. (c) Illustration produced with the same algorithm, but using local
PCA axes for stroke orientations before smoothing. (d) Illustration produced with the same algorithm, but using the gradient of image intensity for stroke
orientations. (e) Illustration whose properties are learned by our algorithm for the screwdriver, but without using segmentation (i.e., orientations are learned by
fitting a single model to the whole drawing and no contextual features are used for learning the stroke properties). (f) Illustration learned by applying all steps
of our algorithm. This result more faithfully matches the style of the input than the other approaches. (g) Results on new views and new objects.

a broader corpus of examples. Nonetheless, our method is still able
to successfully reproduce many aspects of a specific hatching style
even with a single training drawing.

2. RELATED WORK

Previous work has explored various formulas for hatching prop-
erties. Saito and Takahashi [1990] introduced hatching based on
isoparametric and planar curves. Winkenbach and Salesin [1994;
1996] identify many principles of hand-drawn illustration, and de-
scribe methods for rendering polyhedral and smooth objects. Many
other analytic formulas for hatching directions have been proposed,
including principal curvature directions [Elber 1998; Hertzmann
and Zorin 2000; Praun et al. 2001; Kim et al. 2008], isophotes [Kim
et al. 2010], shading gradients [Singh and Schaefer 2010], para-
metric curves [Elber 1998], and user-defined direction fields (e.g.,
Palacios and Zhang [2007]). Stroke tone and density are normally

proportional to depth, shading, or texture, or else based on user-
defined prioritized stroke textures [Praun et al. 2001; Winkenbach
and Salesin 1994, 1996]. In these methods, each hatching property
is computed by a hand-picked function of a single feature of shape,
shading, or texture (e.g., proportional to depth or curvature). As a
result, it is very hard for such approaches to capture the variations
evident in artistic hatching styles (Figure 1). We propose the first
method to learn hatching of 3D objects from examples.

There have been a few previous methods for transferring
properties of artistic rendering by example. Hamel and Strothotte
[1999] transfer user-tuned rendering parameters from one 3D object
to another. Hertzmann et al. [2001] transfer drawing and painting
styles by example using nonparametric synthesis, given image
data as input. This method maps directly from the input to stroke
pixels. In general, the precise locations of strokes may be highly
random (and thus hard to learn) and nonparametric pixel synthesis
can make strokes become broken or blurred. Mertens et al. [2006]

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:3

transfer spatially-varying textures from source to target geometry
using nonparametric synthesis. Jodoin et al. [2002] model relative
locations of strokes, but not conditioned on a target image or object.
Kim et al. [2009] employ texture similarity metrics to transfer
stipple features between images. In contrast to the preceding
techniques, our method maps to hatching properties, such as
desired tone. Hence, although our method models a narrower range
of artistic styles, it can model these styles much more accurately.

A few 2D methods have also been proposed for transferring styles
of individual curves [Freeman et al. 2003; Hertzmann et al. 2002;
Kalnins et al. 2002] or stroke patterns [Barla et al. 2006], problems
which are complementary to ours; such methods could be useful for
the rendering step of our method.

A few previous methods use maching learning techniques to ex-
tract feature curves, such as contours and silhouettes. Lum and Ma
[2005] use neural networks and Support Vector Machines to iden-
tify which subset of feature curves match a user sketch on a given
drawing. Cole et al. [2008] fit regression models of feature curve
locations to a large training set of hand-drawn images. These meth-
ods focus on learning locations of feature curves, whereas we focus
on hatching. Hatching exhibits substantially greater complexity and
randomness than feature curves, since hatches form a network of
overlapping curves of varying orientation, thickness, density, and
cross-hatching level. Hatching also exhibits significant variation in
artistic style.

3. OVERVIEW

Our approach has two main phases. First, we analyze a hand-drawn
pen-and-ink illustration of a 3D object, and learn a model of the
artist’s style that maps from input features of the 3D object to target
hatching properties. This model can then be applied to synthesize
renderings of new views and new 3D objects. Shortly we present an
overview of the output hatching properties and input features. Then
we summarize the steps of our method.

Hatching properties. Our goal is to model the way artists draw
hatching strokes in line drawings of 3D objects. The actual place-
ments of individual strokes exhibit much variation and apparent ran-
domness, and so attempting to accurately predict individual strokes
would be very difficult. However, we observe that the individual
strokes themselves are less important than the overall appearance
that they create together. Indeed, art instruction texts often focus on
achieving particular qualities such as tone or shading (e.g., Guptill
[1997]). Hence, similar to previous work [Winkenbach and Salesin
1994; Hertzmann and Zorin 2000], we model the rendering process
in terms of a set of intermediate hatching properties related to tone
and orientation. Each pixel containing a stroke in a given illustration
is labeled with the following properties.

—Hatching level (h ∈ {0, 1, 2}) indicates whether a region contains
no hatching, single hatching, or cross-hatching.

—Orientation (φ1 ∈ [0 . . . π]) is the stroke direction in image space,
with 180-degree symmetry.

—Cross-hatching orientation (φ2 ∈ [0..π]) is the cross-hatch direc-
tion, when present. Hatches and cross-hatches are not constrained
to be perpendicular.

—Thickness (t ∈ �+) is the stroke width.

—Intensity (I ∈ [0..1]) is how light or dark the stroke is.

—Spacing (d ∈ �+) is the distance between parallel strokes.

—Length (l ∈ �+) is the length of the stroke.

The decomposition of an illustration into hatching properties is
illustrated in Figure 2 (top). In the analysis process, these properties
are estimated from hand-drawn images, and models are learned.
During synthesis, the learned model generates these properties as
targets for stroke synthesis.

Modeling artists’ orientation fields presents special challenges.
Previous work has used local geometric rules for determining stroke
orientations, such as curvature [Hertzmann and Zorin 2000] or gra-
dient of shading intensity [Singh and Schaefer 2010]. We find that,
in many hand-drawn illustrations, no local geometric rule can ex-
plain all stroke orientations. For example, in Figure 3, the strokes
on the cylindrical part of the screwdriver’s shaft can be explained as
following the gradient of the shaded rendering, whereas the strokes
on the flat end of the handle can be explained by the gradient of
ambient occlusion ∇a. Hence, we segment the drawing into re-
gions with distinct rules for stroke orientation. We represent this
segmentation by an additional per-pixel variable.

—Segment label (c ∈ C) is a discrete assignment of the pixel to one
of a fixed set of possible segment labels C.

Each set of pixels with a given label will use a single rule to
compute stroke orientations. For example, pixels with label c1

might use principal curvature orientations, and those with c2 might
use a linear combination of isophote directions and local PCA axes.
Our algorithm also uses the labels to create contextual features
(Section 5.2), which are also taken into account for computing the
rest of the hatching properties. For example, pixels with label c1

may have thicker strokes.

Features. For a given 3D object and view, we define a set of
features containing geometric, shading, and contextual information
for each pixel, as described in Appendices B and C. There are two
types of features: “scalar” features x (Appendix B) and “orientation”
features θ (Appendix C). The features include many object-space
and image-space properties which may be relevant for hatching, in-
cluding features that have been used by previous authors for feature
curve extraction, shading, and surface part labeling. The features
are also computed at multiple scales, in order to capture varying
surface and image detail. These features are inputs to the learning
algorithm, which map from features to hatching properties.

Data acquisition and preprocessing. The first step of our
process is to gather training data and to preprocess it into features
and hatching properties. The training data is based on a single
drawing of a 3D model. An artist first chooses an image from
our collection of rendered images of 3D objects. The images are
rendered with Lambertian reflectance, distant point lighting, and
spherical harmonic self-occlusion [Sloan et al. 2002]. Then, the
artist creates a line illustration, either by tracing over the illustration
on paper with a light table, or in a software drawing package with a
tablet. If the illustration is drawn on paper, we scan the illustration
and align it to the rendering automatically by matching borders
with brute-force search. The artist is asked not to draw silhouette
and feature curves, or to draw them only in pencil, so that they can
be erased. The hatching properties (h, φ, t, I, d, l) for each pixel are
estimated by the preprocessing procedure described in Appendix A.

Learning. The training data is comprised of a single illustration
with features x, θ and hatching properties given for each pixel.
The algorithm learns mappings from features to hatching properties
(Section 5). The segmentation c and orientation properties φ are
the most challenging to learn, because neither the segmentation c
nor the orientation rules are immediately evident in the data; this
represents a form of “chicken-and-egg” problem. We address this

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:4 • E. Kalogerakis et al.

Synthesis for novel
object and view

Synthesis for input
object and view

Analysis for input
object and view

Learning

Artist’s illustration

Input horse

Input cow

Data-driven illustration

Data-driven illustration

Extracted Thickness Extracted Spacing Extracted
Hatching Level

Extracted Intensity Extracted Length Extracted Orientations

Synthesized Thickness Synthesized Spacing
Learned

Hatching Level

Synthesized Intensity Synthesized Length Synthesized Orientations

Synthesized Thickness Synthesized Spacing
Synthesized

Hatching Level

Synthesized Intensity Synthesized Length Synthesized Orientations

no hatching

no hatching

no hatching

hatching

hatching

hatching

cross-hatching

cross-hatching

cross-hatching

Fig. 2. Extraction of hatching properties from a drawing, and synthesis for new drawings. Top: The algorithm decomposes a given artist’s illustration into
a set of hatching properties: stroke thickness, spacing, hatching level, intensity, length, orientations. A mapping from input geometry is learned for each of
these properties. Middle: Synthesis of the hatching properties for the input object and view. Our algorithm automatically separates and learns the hatching
(blue-colored field) and cross-hatching fields (green-colored fields). Bottom: Synthesis of the hatching properties for a novel object and view.

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:5

(a) Estimated clusters using
our mixture-of-experts model

(b) Learned labeling
with Joint Boosting

(c) Learned labeling
with Joint Boosting+CRF

(d) Synthesized labeling
for another object

f1 = ∇a2

f2 = .54(kmax,1) + .46(r⊥)

f1 = .73(∇I3) + .27(r)

f2 = .69(kmax,2) + .31(∇I⊥,3)

f1 = .59(eb,3) + .41(∇(L ·N)3)

f2 = .63(ea,3) + .37(∇(L ·N)⊥,3)

f1 = .88(∇a3) + .12(∇(L ·N)3)

f2 = .45(kmax,2) + .31(∇a⊥,3) + .24(ea,3)

f1 = .77(eb,3) + .23(∇I3)

f2 = v

Fig. 3. Clustering orientations. The algorithm clusters stroke orientations according to different orientation rules. Each cluster specifies rules for hatching (�f1)
and cross-hatching (�f2) directions. Cluster labels are color-coded in the figure, with rules shown below. The cluster labels and the orientation rules are estimated
simultaneously during learning. (a) Inferred cluster labels for an artist’s illustration of a screwdriver. (b) Output of the labeling step using the most likely labels
returned by the Joint Boosting classifier alone. (c) Output of the labeling step using our full CRF model. (d) Synthesis of part labels for a novel object. Rules:
In the legend, we show the corresponding orientation functions for each region. In all cases, the learned models use one to three features. Subscripts {1, 2, 3}
indicate the scale used to compute the field. The ⊥ operator rotates the field by 90 degrees in image-space. The orientation features used here are: maximum
and minimum principal curvature directions (�kmax , �kmin), PCA directions corresponding to first and second largest eigenvalue (�ea , �eb), fields aligned with
ridges and valleys respectively (�r , �v), Lambertian image gradient (∇I), gradient of ambient occlusion (∇a), and gradient of �L · �N (∇(�L · �N)). Features that
arise as 3D vectors are projected to the image plane. See Appendix C for details.

using a learning and clustering algorithm based on Mixtures-of-
Experts (Section 5.1).

Once the input pixels are classified, a pixel classifier is learned
using Conditional Random Fields with unary terms based on Joint-
Boost (Section 5.2). Finally, each real-valued property is learned
using boosting for regression (Section 5.3). We use boosting tech-
niques for classification and regression since we do not know in
advance which input features are the most important for different
styles. Boosting can handle a large number of features, can select the
most relevant features, and has a fast sequential learning algorithm.

Synthesis. A hatching style is transferred to a target novel view
and/or object by first computing the features for each pixel, and then
applying the learned mappings to compute the preceding hatching
properties. A streamline synthesis algorithm [Hertzmann and Zorin
2000] then places hatching strokes to match the synthesized prop-
erties. Examples of this process are shown in Figure 2.

4. SYNTHESIS ALGORITHM

The algorithm for computing a pen-and-ink illustration of a view
of a 3D object is as follows. For each pixel of the target image,
the features x and θ are first computed (Appendices B and C). The
segment label and hatching level are each computed as a function
of the scalar features x, using image segmentation and recognition
techniques. Given these segments, orientation fields for the target
image are computed by interpolation of the orientation features θ .
Then, the remaining hatching properties are computed by learning
functions of the scalar features. Finally, a streamline synthesis algo-
rithm [Hertzmann and Zorin 2000] renders strokes to match these
synthesized properties. A streamline is terminated when it crosses
an occlusion boundary, or the length grows past the value of the per-
pixel target stroke length l, or violates the target stroke spacing d .

We now describe these steps in more detail. In Section 5, we will
describe how the algorithm’s parameters are learned.

4.1 Segmentation and Labeling

For a given view of a 3D model, the algorithm first segments the
image into regions with different orientation rules and levels of
hatching. More precisely, given the feature set x for each pixel, the
algorithm computes the per-pixel segment labels c ∈ C and hatching
level h ∈ {0, 1, 2}. There are a few important considerations when
choosing an appropriate segmentation and labeling algorithm. First,
we do not know in advance which features in x are important, and so
we must use a method that can perform feature selection. Second,
neighboring labels are highly correlated, and performing classifi-
cation on each pixel independently yields noisy results (Figure 3).
Hence, we use a Conditional Random Field (CRF) recognition algo-
rithm, with JointBoost unary terms [Kalogerakis et al. 2010; Shotton
et al. 2009; Torralba et al. 2007]. One such model is learned for seg-
ment labels c, and a second for hatching level h. Learning these
models is described in Section 5.2.

The CRF objective function includes unary terms that assess the
consistency of pixels with labels, and pairwise terms that assess the
consistency between labels of neighboring pixels. Inferring segment
labels based on the CRF model corresponds to minimizing the
following objective function. We have

E(c) =
∑

i

E1(ci ; xi) +
∑
i,j

E2(ci, cj ; xi , xj), (1)

where E1 is the unary term defined for each pixel i, E2 is the
pairwise term defined for each pair of neighboring pixels {i, j},
where j ∈ N (i) and N (i) is defined using the 8-neighborhood of
pixel i.

The unary term evaluates a JointBoost classifier that, given the
feature set xi for pixel i, determines the probability P (ci |xi) for
each possible label ci . The unary term is then

E1(ci ; x) = − log P (ci |xi). (2)

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:6 • E. Kalogerakis et al.

The mapping from features to probabilities P (ci |xi) is learned from
the training data using the JointBoost algorithm [Torralba et al.
2007].

The pairwise energy term scores the compatibility of adjacent
pixel labels ci and cj , given their features xi and xj . Let ei be
a binary random variable representing if the pixel i belongs to a
boundary of hatching region or not. We define a binary JointBoost
classifier that outputs the probability of boundaries of hatching
regions P (e|x) and compute the pairwise term as

E2(ci, cj ; xi , xj) = −� · I (ci, cj) · (log((P (ei |xi)+P (ej |xj)))+μ),
(3)

where �, μ are the model parameters and I (ci, cj) is an indicator
function that is 1 when ci �= cj and 0 when ci = cj . The parameter
� controls the importance of the pairwise term while μ contributes
to eliminating tiny segments and smoothing boundaries.

Similarly, inferring hatching levels based on the CRF model cor-
responds to minimizing the following objective function.

E(h) =
∑

i

E1(hi ; xi) +
∑
i,j

E2(hi, hj ; xi , xj) (4)

As already mentioned, the unary term evaluates another JointBoost
classifier that, given the feature set xi for pixel i, determines the
probability P (hi |xi) for each hatching level h ∈ {0, 1, 2}. The pair-
wise term is also defined as

E2(hi, hj ; xi , xj) = −� ·I (hi, hj) · (log((P (ei |xi)+P (ej |xj)))+μ)
(5)

with the same values for the parameters of �, μ as earlier.
The most probable labeling is the one that minimizes the CRF

objective function E(c) and E(h), given their learned parameters.
The CRFs are optimized using alpha-expansion graph-cuts [Boykov
et al. 2001]. Details of learning the JointBoost classifiers and �, μ
are given in Section 5.2.

4.2 Computing Orientations

Once the per-pixel segment labels c and hatching levels h are com-
puted, the per-pixel orientations φ1 and φ2 are computed. The num-
ber of orientations to be synthesized is determined by h. When h = 0
(no hatching), no orientations are produced. When h = 1 (single
hatching), only φ1 is computed and, when h = 2 (cross-hatching),
φ2 is also computed.

Orientations are computed by regression on a subset of the orien-
tation features θ for each pixel. Each cluster c may use a different
subset of features. The features used by a segment are indexed by a
vector σ , that is, the features’ indices are σ (1), σ (2), . . . , σ (k). Each
orientation feature represents an orientation field in image space,
such as the image projection of principal curvature directions. In
order to respect 2-symmetries in orientation, a single orientation θ
is transformed to a vector as

v = [cos(2θ), sin(2θ)]T . (6)

The output orientation function is expressed as a weighted sum of
selected orientation features. We have

f (θ ; w) =
∑

k

wσ (k)vσ (k), (7)

where σ (k) represents the index to the k-th orientation feature in
the subset of selected orientation features, vσ (k) is its vector rep-
resentation, and w is a vector of weight parameters. There is an
orientation function f (θ ; wc,1) for each label c ∈ C and, if the

class contains cross-hatching regions, it has an additional orienta-
tion function f (θ ; wc,2) for determining the cross-hatching direc-
tions. The resulting vector is computed to an image-space angle as
φ = atan2(y, x)/2.

The weights w and feature selection σ are learned by the gradient-
based boosting for regression algorithm of Zemel and Pitassi [2001].
The learning of the parameters and the feature selection is described
in Section 5.1.

4.3 Computing Real-Valued Properties

The remaining hatching properties are real-valued quantities. Let y
be a feature to be synthesized on a pixel with feature set x. We use
multiplicative models of the form

y =
∏

k

(
akxσ (k) + bk

)αk

, (8)

where xσ (k) is the index to the k-th scalar feature from x. The use
of a multiplicative model is inspired by Goodwin et al. [2007], who
propose a model for stroke thickness that can be approximated by a
product of radial curvature and inverse depth. The model is learned
in the logarithmic domain, which reduces the problem to learning
the weighted sum.

log(y) =
∑

k

αk log
(
akxσ (k) + bk

)
(9)

Learning the parameters αk, ak, bk, σ (k) is again performed using
gradient-based boosting [Zemel and Pitassi 2001], as described in
Section 5.3.

5. LEARNING

We now describe how to learn the parameters of the functions used
in the synthesis algorithm described in the previous section.

5.1 Learning Segmentation and Orientation
Functions

In our model, the hatching orientation for a single-hatching pixel
is computed by first assigning the pixel to a cluster c, and then
applying the orientation function f (θ ; wc) for that cluster. If we
knew the clustering in advance, then it would be straightforward
to learn the parameters wc for each pixel. However, neither the
cluster labels nor the parameters wc are present in the training data.
In order to solve this problem, we develop a technique inspired
by Expectation-Maximization for Mixtures-of-Experts [Jordan and
Jacobs 1994], but specialized to handle the particular issues of
hatching.

The input to this step is a set of pixels from the source illus-
tration with their corresponding orientation feature set θ i , training
orientations φi , and training hatching levels hi . Pixels containing
intersections of strokes or no strokes are not used. Each cluster c
may contain either single-hatching or cross-hatching. Single-hatch
clusters have a single orientation function (Eq. (7)), with unknown
parameters wc1. Clusters with cross-hatches have two subclusters,
each with an orientation function with unknown parameters wc1 and
wc2. The two orientation functions are not constrained to produce
directions orthogonal to each other. Every source pixel must be-
long to one of the top-level clusters, and every pixel belonging to a
cross-hatching cluster must belong to one of its subclusters.

For each training pixel i, we define a labeling probability γic

indicating the probability that pixel i lies in top-level cluster c,
such that

∑
c γic = 1. Also, for each top-level cluster, we define a

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:7

subcluster probability βicj , where j ∈ {1, 2}, such that βic1 +βic2 =
1. The probability βicj measures how likely the stroke orientation
at pixel i corresponds to a hatching or cross-hatching direction.
Single-hatching clusters have βic2 = 0. The probability that pixel i
belongs to the subcluster indexed by {c, j} is γicβicj .

The labeling probabilities are modeled based on a mixture-of-
Gaussians distribution [Bishop 2006]. We have

γic = πc exp(−ric/2s)∑
c πc exp(−ric/2s)

, (10)

βicj = πcj exp(−ricj /2sc)

πc1 exp(−ric1/2sc) + πc2 exp(−ric2/2sc)
, (11)

where πc, πcj are the mixture coefficients, s, sc are the variances
of the corresponding Gaussians, ricj is the residual for pixel i with
respect to the orientation function j in cluster c, and ric is defined
as

ric = min
j∈{1,2}

||ui − f (θ i ; wcj)||2, (12)

where ui = [cos(2φi), sin(2φi)]T .
The process begins with an initial set of labels γ , β, and w,

and then alternates between updating two steps: the model update
step where the orientation functions, the mixture coefficients, and
variances are updated, and the label update step where the labeling
probabilities are updated.

Model update. Given the labeling, orientation functions for
each cluster are updated by minimizing the boosting error function,
described in Appendix D, using the initial per-pixel weights αi =
γicβicj .

In order to avoid overfitting, a set of holdout-validation pixels are
kept for each cluster. This set is found by selecting rectangles of ran-
dom size and marking their containing pixels as holdout-validation
pixels. Our algorithm stops when 25% of the cluster pixels are
marked as holdout-validation pixels. The holdout-validation pixels
are not considered for fitting the weight vector wcj . At each boost-
ing iteration, our algorithm measures the holdout-validation error
measured on these pixels. It terminates the boosting iterations when
the holdout-validation error reaches a minimum. This helps avoid
overfitting the training orientation data.

During this step, we also update the mixture coefficients and
variances of the Gaussians in the mixture model, so that the data
likelihood is maximized in this step [Bishop 2006]. We have

πc =
∑

i

γic/N, s =
∑
ic

γicric/N, (13)

πcj =
∑

i

βicj /N, sc =
∑
ij

βicj ricj /N, (14)

where N is the total number of pixels with training orientations.

Label update. Given the estimated orientation functions from
the previous step, the algorithm computes the residual for each
model and each orientation function. Median filtering is applied to
the residuals, in order to enforce spatial smoothness: ric is replaced
with the value of the median of r∗c in the local image neighborhood
of pixel i (with radius equal to the local spacing Si). Then the pixel
labeling probabilities are updated according to Eqs. (10) and (11).

Initialization. The clustering is initialized using a constrained
mean-shift clustering process with a flat kernel, similar to con-
strained K-means [Wagstaff et al. 2001]. The constraints arise from
a region-growing strategy to enforce spatial continuity of the initial
clusters. Each cluster grows by considering randomly-selected seed

pixels in their neighborhood and adding them only if the difference
between their orientation angle and the cluster’s current mean ori-
entation is below a threshold. In the case of cross-hatching clusters,
the minimum difference between the two mean orientations is used.
The threshold is automatically selected once during preprocessing
by taking the median of each pixel’s local neighborhood orientation
angle differences. The process is repeated for new pixels and the
cluster’s mean orientation(s) are updated at each iteration. Clusters
composed of more than 10% cross-hatch pixels are marked as cross-
hatching clusters; the rest are marked as single-hatching clusters.
The initial assignment of pixels to clusters gives a binary-valued ini-
tialization for γ . For cross-hatch pixels, if more than half the pixels
in the cluster are assigned to orientation function wk2, our algorithm
swaps wk1 and wk2. This ensures that the first hatching direction will
correspond to the dominant orientation. This aids in maintaining
orientation field consistency between neighboring regions.

An example of the resulting clustering for an artist’s illustration
of screwdriver is shown in Figure 3(a). We also include the functions
learned for the hatching and cross-hatching orientation fields used
in each resulting cluster.

5.2 Learning Labeling with CRFs

Once the training labels are estimated, we learn a procedure to trans-
fer them to new views and objects. Here we describe the procedure
to learn the Conditional Random Field model of Eq. (1) for assign-
ing segment labels to pixels as well as the Conditional Random
Field of Eq. (4) for assigning hatching levels to pixels.

Learning to segment and label. Our goal here is to learn the
parameters of the CRF energy terms (Eq. (1)). The input is the scalar
feature set x̃i for each stroke pixel i (described in Appendix B) and
their associated labels ci , as extracted in the previous step. Following
Tu [2008], Shotton et al. [2008], and Kalogerakis et al. [2010], the
parameters of the unary term are learned by running a cascade
of JointBoost classifiers. The cascade is used to obtain contextual
features which capture information about the relative distribution of
cluster labels around each pixel. The cascade of classifiers is trained
as follows.

The method begins with an initial JointBoost classifier using an
initial feature set x̃, containing the geometric and shading features,
described in Appendix B. The classifier is applied to produce the
probability P (ci |x̃i) for each possible label ci given the feature set
x̃i of each pixel i. These probabilities are then binned in order
to produce contextual features. In particular, for each pixel, the
algorithm computes a histogram of these probabilities as a function
of geodesic distances from it. We have

pc
i =

∑
j : db≤dist(i,j)<db+1

P (cj)/Nb, (15)

where the histogram bin b contains all pixels j with geodesic
distance range [db, db+1] from pixel i, and Nb is the total number of
pixels in the histogram bin b. The geodesic distances are computed
on the mesh and projected to image space. 4 bins are used,
chosen in logarithmic space. The bin values pc

i are normalized
to sum to 1 per pixel. The total number of bins are 4|C|. The
values of these bins are used as contextual features, which are
concatenated into x̃i to form a new scalar feature set xi . Then, a
second JointBoost classifier is learned, using the new feature set
x as input and outputting updated probabilities P (ci |xi). These are
used in turn to update the contextual features. The next classifier
uses the contextual features generated by the previous one, and
so on. Each JointBoost classifier is initialized with uniform

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:8 • E. Kalogerakis et al.

Least-squares Decision Tree
Gaussian

Bayes
Nearest

Neighbors

SVM
Logistic

Regression JointBoost JointBoost
and CRF

no hatching hatching cross-hatching

Fig. 4. Comparisons of various classifiers for learning the hatching level.
The training data is the extracted hatching level on the horse of Figure 2
and feature set x. Left to right: least-squares for classification, decision tree
(Matlab’s implementation based on Gini’s diversity index splitting crite-
rion), Gaussian Naive Bayes, Nearest Neighbors, Support Vector Machine,
Logistic Regression, Joint Boosting, Joint Boosting and Conditional Ran-
dom Field (full version of our algorithm). The regularization parameters
of SVMs, Gaussian Bayes, Logistic Regression are estimated by hold-out
validation with the same procedure as in our algorithm.

weights and terminates when the holdout-validation error reaches
a minimum. The holdout-validation error is measured on pixels
that are contained in random rectangles on the drawing, selected
as before. The cascade terminates when the holdout-validation
error of a JointBoost classifier is increased with respect to the
holdout-validation error of the previous one. The unary term is
defined based on the probabilities returned by the latter classifier.

To learn the pairwise term of Eq. (3), the algorithm needs to
estimate the probability of boundaries of hatching regions P (e|x),
which also serve as evidence for label boundaries. First, we ob-
serve that segment boundaries are likely to occur at particular parts
of an image; for example, pixels separated by an occluding and
suggestive contour are much less likely to be in the same segment
as two pixels that are adjacent on the surface. For this reason, we
define a binary JointBoost classifier, which maps to probabilities of
boundaries of hatching regions for each pixel, given the subset of
its features x computed from the feature curves of the mesh (see
Appendix B). In this binary case, JointBoost reduces to an earlier
algorithm called GentleBoost [Friedman et al. 2000]. The training
data for this pairwise classifier are supplied by the marked bound-
aries of hatching regions of the source illustration (see Appendix A);
pixels that are marked as boundaries have e = 1, otherwise e = 0.
The classifier is initialized with more weight given to the pixels that
contain boundaries of hatching level regions, since the training data
contains many more nonboundary pixels. More specifically, if NB

are the total number of boundary pixels, and NNB is the number
of nonboundary pixels, then the weight is NNB/NB for boundary
pixels and 1 for the rest. The boosting iterations terminate when the
hold-out validation error measured on validation pixels (selected as
described earlier) is minimum.

Finally, the parameters � and μ are optimized by maximizing the
energy term

ES =
∑

i:ci �=cj ,j∈N(i)

P (ei |x), (16)

where N (i) is the 8-neighborhood of pixel i, and ci, cj are the labels
for each pair of neighboring pixels i, j inferred using the CRF model

Linear
Regression

Ridge
Regression Lasso

Gradient-based
boosting

Fig. 5. Comparisons of the generalization performance of various tech-
niques for regression for the stroke spacing. The same training data are
provided to the techniques based on the extracted spacing on the horse of
Figure 2 and feature set x. Left to right: Linear regression (least-squares
without regularization), Ridge Regression, Lasso, gradient-based boosting.
Fitting a model on such very high-dimensional space without any sparsity
prior yields very poor generalization performance. Gradient-based boosting
gives more reasonable results than Ridge Regression or Lasso, especially
on the legs of the cow, where the predicted spacing values seem to be more
consistent with the training values on the legs of the horse (see Figure 2).
The regularization parameters of Ridge Regression and Lasso are estimated
by hold-out validation with the same procedure as in our algorithm.

of Eq. (1) based on the learned parameters of its unary and pairwise
classifier and using different values for �, μ. This optimization at-
tempts to “push” the segment label boundaries to be aligned with
pixels that have higher probability to be boundaries. The energy is
maximized using Matlab’s implementation of Preconditioned Con-
jugate Gradient with numerically-estimated gradients.

Learning to generate hatching levels. The next step is to
learn the hatching levels h ∈ {0, 1, 2}. The input here is the hatching
level hi per pixel contained inside the rendered area (as extracted
during the preprocessing step (Appendix A) together with their full
feature set xi (including the contextual features as extracted before).

Our goal is to compute the parameters of the second CRF model
used for inferring the hatching levels (Eq. (4)). Our algorithm first
uses a JointBoost classifier that maps from the feature set x to the
training hatching levels h. The classifier is initialized with uniform
weights and terminates the boosting rounds when the hold-out
validation error is minimized (the hold-out validation pixels are
selected as described earlier). The classifier outputs the probability
P (hi |xi), which is used in the unary term of the CRF model.
Finally, our algorithm uses the same pairwise term parameters
trained with the CRF model of the segment labels to rectify the
boundaries of the hatching levels.

Examples comparing our learned hatching algorithm to several
alternatives are shown in Figure 4.

5.3 Learning Real-Valued Stroke Properties

Thickness, intensity, length, and spacing are all positive, real-valued
quantities, and so the same learning procedure is used for each one in
turn. The input to the algorithm are the values of the corresponding
stroke properties, as extracted in the preprocessing step (Section A)
and the full feature set xi per pixel.

The multiplicative model of Eq. (8) is used to map the features
to the stroke properties. The model is learned in the log-domain, so
that it can be learned as a linear sum of log functions. The model is
learned with gradient-based boosting for regression (Appendix D).
The weights for the training pixels are initialized as uniform. As
earlier, the boosting iterations stop when the holdout-validation
measured on randomly selected validation pixels is minimum.

Examples comparing our method to several alternatives are
shown in Figure 5.

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:9

Artist’s illustration
Our rendering for
input view & object

Fig. 6. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a horse. Rendering of the model with our
learned style. Renderings of new views and new objects.

6. RESULTS

The figures throughout our article show synthesized line drawings
of novel objects and views with our learning technique (Figures 1,
and 6 through 14). As can be seen in the examples, our method
captures several aspects of the artist’s drawing style, better than
alternative previous approaches (Figure 1). Our algorithm adapts
to different styles of drawing and successfully synthesizes them
for different objects and views. For example, Figures 6 and 7 show
different styles of illustrations for the same horse, applied to new
views and objects. Figure 14 shows more examples of synthesis
with various styles and objects.

However, subtleties are sometimes lost. For example, in
Figure 12, the face is depicted with finer-scale detail than the
clothing, which cannot be captured in our model. In Figure 13, our
method loses variation in the character of the lines, and depiction
of important details such as the eye. One reason for this is that the
stroke placement algorithm attempts to match the target hatching
properties, but does not optimize to match a target tone. These
variations may also depend on types of parts (e.g., eyes versus
torsos), and could be addressed given part labels [Kalogerakis et al.
2010]. Figure 11 exhibits randomness in stroke spacing and width
that is not modeled by our technique.

Selected features. We show the frequency of orientation fea-
tures selected by gradient-based boosting and averaged over all our
nine drawings in Figure 15. Fields aligned with principal curvature

directions as well as local principal axes (corresponding to candidate
local planar symmetry axes) play very important roles for synthe-
sizing the hatching orientations. Fields aligned with suggestive con-
tours, ridges, and valleys are also significant for determining orien-
tations. Fields based on shading attributes have moderate influence.

We show the frequency of scalar features averaged selected by
boosting and averaged over all our nine drawings in Figure 16 for
learning the hatching level, thickness, spacing, intensity, length,
and segment label. Shape descriptor features (based on PCA, shape
contexts, shape diameter, average geodesic distance, distance from
medial surface, contextual features) seem to have large influence
on all the hatching properties. This means that the choice of tone is
probably influenced by the type of shape part the artist draws. The
segment label is mostly determined by the shape descriptor features,
which is consistent with the previous work on shape segmentation
and labeling [Kalogerakis et al. 2010]. The hatching level is mostly
influenced by image intensity, �V · �N , �L · �N . The stroke thickness
is mostly affected by shape descriptor features, curvature, �L · �N ,
gradient of image intensity, the location of feature lines, and, finally,
depth. Spacing is mostly influenced by shape descriptor features,
curvature, derivatives of curvature, �L · �N , and �V · �N . The intensity
is influenced by shape descriptor features, image intensity, �V · �N ,
�L · �N , depth, and the location of feature lines. The length is mostly
determined by shape descriptor features, curvature, radial curvature,
�L · �N , image intensity and its gradient, and location of feature lines
(mostly suggestive contours).

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:10 • E. Kalogerakis et al.

Artist’s illustration
Our rendering for

input view & object

Fig. 7. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a horse with a different style than 6. Rendering
of the model with our learned style. Renderings of new views and new objects.

However, it is important to note that different features are learned
for different input illustrations. For example, in Figure 11, the light
directions mostly determine the orientations, which is not the case
for the rest of the drawings. We include histograms of the frequency
of orientation and scalar features used for each of the drawing in
the supplementary material.

Computation time. In each case, learning a style from a source
illustration takes 5 to 10 hours on a laptop with Intel i7 processor.
Most of the time is consumed by the orientation and clustering step
(Section 5.1) (about 50% of the time for the horse), which is im-
plemented in Matlab. Learning segment labels and hatching levels
(Section 5.2) represents about 25% of the training time (imple-
mented in C++) and learning stroke properties (Section 5.3) takes
about 10% of the training time (implemented in Matlab). The rest
of the time is consumed for extracting the features (implemented
in C++) and training hatching properties (implemented in Matlab).
We note that our implementation is currently far from optimal,
hence, running times could be improved. Once the model of the
style is learned, it can be applied to different novel data. Given the
predicted hatching and cross-hatching orientations, hatching level,
thickness, intensity, spacing, and stroke length at each pixel, our
algorithm traces streamlines over the image to generate the final
pen-and-ink illustration. Synthesis takes 30 to 60 minutes. Most of
the time (about 60%) is consumed here for extracting the features.
The implementations for feature extraction and tracing streamlines
are also far from optimal.

7. SUMMARY AND FUTURE WORK

Ours is the first method to generate predictive models for synthe-
sizing detailed line illustrations from examples. We model line il-
lustrations with a machine learning approach using a set of features
suspected to play a role in the human artistic process. The complex-
ity of man-made illustrations is very difficult to reproduce; however,
we believe our work takes a step towards replicating certain key as-
pects of the human artistic process. Our algorithm generalizes to
novel views as well as objects of similar morphological class.

There are many aspects of hatching styles that we do not capture,
including: stroke textures, stroke tapering, randomness in strokes
(such as wavy or jittered lines), cross-hatching with more than two
hatching directions, style of individual strokes, and continuous tran-
sitions in hatching level. Interactive edits to the hatching properties
could be used to improve our results [Salisbury et al. 1994].

Since we learn from a single training drawing, the generalization
capabilities of our method to novel views and objects are limited. For
example, if the relevant features differ significantly between the test
views and objects, then our method will not generalize to them. Our
method relies on holdout validation using randomly selected regions
to avoid overfitting; this ignores the hatching information existing
in these regions that might be valuable. Retraining the model is
sometimes useful to improve results, since these regions are selected
randomly. Learning from a broader corpus of examples could help
with these issues, although this would require drawings where the
hatching properties change consistently across different object and

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:11

Artist’s illustration
Our rendering for

input view & object

Fig. 8. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a rocker arm. Rendering of the model with our
learned style. Renderings of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Fig. 9. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a pitcher. Rendering of the model with our
learned style. Renderings of new views and new objects.

views. In addition, if none of the features or a combination of them
can be mapped to a hatching property, then our method will also fail.

Finding what and how other features are relevant to artists’ pen-
and-ink illustrations is an open problem. Our method does not repre-
sent the dependence of style on part labels (e.g., eyes versus torsos),
as previously done for painterly rendering of images [Zeng et al.
2009]. Given such labels, it could be possible to generalize the
algorithm to take this information into account.

The quality of our results depend on how well the hatching
properties were extracted from the training drawing during the pre-

processing step. This step gives only coarse estimates, and depends
on various thresholds. This preprocessing cannot handle highly-
stylized strokes such as wavy lines or highly-textured strokes.

Example-based stroke synthesis [Freeman et al. 2003; Hertz-
mann et al. 2002; Kalnins et al. 2002] may be combined with
our approach to generate styles with similar stroke texture. An
optimization technique [Turk and Banks 1996] might be used
to place streamlines appropriately in order to match a target
tone. Our method focuses only on hatching, and renders feature
curves separately. Learning the feature curves is an interesting

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:12 • E. Kalogerakis et al.

Artist’s illustration
Our rendering for

input view & object

Fig. 10. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a Venus statue. Rendering of the model with
our learned style. Renderings of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Fig. 11. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a bunny using a particular style; hatching
orientations are mostly aligned with point light directions. Rendering of the model with our learned style. Renderings of new views and new objects.

future direction. Another direction for future work is hatching for
animated scenes, possibly based on a data-driven model similar
to Kalogerakis et al. [2009]. Finally, we believe that aspects of
our approach may be applicable to other applications in geometry
processing and artistic rendering, especially for vector field design.

APPENDIX

A. IMAGE PREPROCESSING

Given an input illustration drawn by an artist, we apply the fol-
lowing steps to determine the hatching properties for each stroke
pixel. First, we scan the illustration and align it to the rendering
automatically by matching borders with brute-force search. The
following steps are sufficiently accurate to provide training data for
our algorithms.

Intensity. The intensity Ii is set to the grayscale intensity of the
pixel i of the drawing. It is normalized within the range [0, 1].
Thickness. Thinning is first applied to identify a single-pixel-wide
skeleton for the drawing. Then, from each skeletal pixel, a

Breadth-First Search (BFS) is performed to find the nearest pixel
in the source image with intensity less than half of the start pixel.
The distance to this pixel is the stroke thickness.
Orientation. The structure tensor of the local image neighborhood
is computed at the scale of the previously-computed thickness of
the stroke. The dominant orientation in this neighborhood is given
by the eigenvector corresponding to the smallest eigenvalue of the
structure tensor. Intersection points are also detected, so that they
can be omitted from orientation learning. Our algorithm marks as
intersection points those points detected by a Harris corner detector
in both the original drawing and the skeleton image. Finally, in
order to remove spurious intersection points, pairs of intersection
points are found with distance less than the local stroke thickness,
and their centroid is marked as an intersection instead.
Spacing. For each skeletal pixel, a circular region is grown around
the pixel. At each radius, the connected components of the region
are computed. If at least 3 pixels in the region are not connected to
the center pixel, with orientation within π/6 of the center pixel’s
orientation, then the process halts. The spacing at the center pixel
is set to the final radius.
Length. A BFS is executed on the skeletal pixels to count the
number of pixels per stroke. In order to follow a single stroke

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:13

Our rendering for
input view & object

Artist
,
s illustration

Fig. 12. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a statue. Rendering of the model with our
learned style. Renderings of new views and new objects.

Artist
,
s illustration

Our rendering for
input view & object

Fig. 13. Data-driven line art illustrations generated with our algorithm. From left to right: Artist’s illustration of a cow. Rendering of the model with our
learned style. Renderings of new views and new objects.

(excluding pixels from overlapping cross-hatching strokes), at
each BFS expansion, pixels are considered inside the current
neighborhood with similar orientation (at most π/12 angular
difference from the current pixel’s orientation).
Hatching level. For each stroke pixel, an ellipsoidal mask is created
with its semiminor axis aligned to the extracted orientation, and

major radius equal to its spacing. All pixels belonging to any of
these masks are given label Hi = 1. For each intersection pixel,
a circular mask is also created around it with radius equal to its
spacing. All connected components are computed from the union
of these masks. If any connected component contains more than 4
intersection pixels, the pixels of the component are assigned with

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:14 • E. Kalogerakis et al.

Artists’
illustrations

S
yn

th
es

is
 fo

r
no

ve
l o

bj
ec

ts

Fig. 14. Data-driven line art illustrations generated with our algorithm based on the learned styles from the artists’ drawings in Figures 1, 6, 7, 10, 13.

0.0 0.10 0.20 0.30

kmax, kmin

ea eb

∇(L×N)

∇(V ×N)

s

v

r

∇a

∇I

∇(L ·N)

∇(V ·N)

E

L

Fig. 15. Frequency of the first three orientation features selected by
gradient-based boosting for learning the hatching orientation fields. The
frequency is averaged over all our nine training drawings (Figures 1, 6, 7,
8, 9, 10, 11, 12, 13). The contribution of each feature is also weighted by
the total segment area where it is used. The orientation features are grouped
based on their type: principal curvature directions (�kmax, �kmin), local prin-
cipal axes directions (�ea, �eb), ∇(�L× �N), ∇(�V × �N), directions aligned with
suggestive contours (�s), valleys (�v), ridges (�r), gradient of ambient occlu-
sion (∇a), gradient of image intensity (∇I), gradient of (�L · �N), gradient of
(�V · �N), vector irradiance (�E), projected light direction (�L).

label Hi = 2. Two horizontal and vertical strokes give rise to a
minimum cross-hatching region (with 4 intersections).
Hatching region boundaries. Pixels are marked as boundaries if
they belong to boundaries of the hatching regions or if they are
endpoints of the skeleton of the drawing.

We perform a final smoothing step (with a Gaussian kernel of
width equal to the median of the spacing values) to denoise the
properties.

B. SCALAR FEATURES

There are 1204 scalar features (x̃ ∈ �760) for learning the scalar
properties of the drawing. The first 90 are mean curvature, Gaus-
sian curvature, maximum and minimum principal curvatures by
sign and absolute value, derivatives of curvature, radial curvature
and its derivative, view-dependent minimum and maximum curva-
tures [Judd et al. 2007], geodesic torsion in the projected viewing
direction [DeCarlo and Rusinkiewicz 2007]. These are measured in
three scales (1%, 2%, 5% relative to the median of all-pairs geodesic
distances in the mesh) for each vertex. We also include their abso-
lute values, since some hatching properties may be insensitive to
sign. The aforesaid features are first computed in object-space and
then projected to image-space.

The next 110 features are based on local shape descriptors, also
used in Kalogerakis et al. [2010] for labeling parts. We compute the
singular values s1, s2, s3 of the covariance of vertices inside patches
of various geodesic radii (5%, 10%, 20%) around each vertex, and
also add the following features for each patch: s1/(s1 + s2 + s3),
s2/(s1 + s2 + s3), s3/(s1 + s2 + s3), (s1 + s2)/(s1 + s2 + s3),
(s1 + s3)/(s1 + s2 + s3), (s2 + s3)/(s1 + s2 + s3), s1/s2, s1/s3, s2/s3,
s1/s2 + s1/s3, s1/s2 + s2/s3, s1/s3 + s2/s3, yielding 45 features total.
We also include 24 features based on the Shape Diameter Function
(SDF) [Shapira et al. 2010] and distance from medial surface [Liu
et al. 2009]. The SDF features are computed using cones of angles
60, 90, and 120 per vertex. For each cone, we get the weighted
average of the samples and their logarithmized versions with dif-
ferent normalizing parameters α = 1, α = 2, α = 4. For each
of the preceding cones, we also compute the distance of medial
surface from each vertex. We measure the diameter of the maximal
inscribed sphere touching each vertex. The corresponding medial
surface point will be roughly its center. Then we send rays from
this point uniformly sampled on a Gaussian sphere, gather the in-
tersection points, and measure the ray lengths. As with the shape
diameter features, we use the weighted average of the samples, we

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:15

0.0 0.10 0.20 0.30

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

V ·N

L ·N
|∇ I|

|∇ (V ·N)|

|∇ (L ·N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

V ·N

L ·N
|∇ I|

|∇(V ·N)|

|∇(L ·N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

V ·N

L ·N
|∇I|

|∇(V ·N)|

|∇(L ·N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

Top features used for hatching level Top features used for thickness Top features used for spacing

0.0 0.05 0.10 0.15 0.20 0.25

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

V ·N

L ·N
|∇ I|

|∇(V ·N)|

|∇(L ·N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

V ·N

L ·N
|∇I|

|∇(V ·N)|

|∇(L ·N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

0.0 0.10 0.20 0.30 0.40

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD

Depth

Amb.Occl.

I

V ·N

L ·N
|∇I|

|∇(V ·N)|

|∇(L ·N)|

S.Contours

App.Ridges

Ridges

Valleys

Contextual

Top features used for intensity Top features used for length Top features used for segment label

Fig. 16. Frequency of the first three scalar features selected by the boosting techniques used in our algorithm for learning the scalar hatching properties. The
frequency is averaged over all nine training drawings. The scalar features are grouped based on their type: Curvature (Curv.), Derivatives of Curvature (D.
Curv.), Radial Curvature (Rad. Curv.), Derivative of Radial Curvature (D. Rad. Curv.), Torsion, features based on PCA analysis on local shape neighborhoods,
features based Shape Context histograms [Belongie et al. 2002], features based on geodesic distance descriptor [Hilaga et al. 2001], shape diameter function
features [Shapira et al. 2010], distance from medial surface features [Liu et al. 2009], depth, ambient occlusion, image intensity (I), �V · �N , �L · �N , gradient
magnitudes of the last three, strength of suggestive contours, strength of apparent ridges, strength of ridges and values, contextual label features.

normalize and logarithmize them with the same preceding normal-
izing parameters. In addition, we use the average, squared mean,
10th, 20th, . . . , 90th percentile of the geodesic distances of each
vertex to all the other mesh vertices, yielding 11 features. Finally,
we use 30 shape context features [Belongie et al. 2002], based on the
implementation of Kalogerakis et al. [2010]. All the these features
are first computed in object-space per vertex and then projected to
image-space.

The next 53 features are based on functions of the rendered
3D object in image-space. We use maximum and minimum image
curvature, image intensity, and image gradient magnitude features,
computed with derivative-of-Gaussian kernels with σ = 1, 2, 3, 5,
yielding 16 features. The next 12 features are based on shading under
different models: �V · �N , �L · �N (both clamped at zero), ambient
occlusion, where �V , �L, and �N are the view, light, and normal vectors
at a point. These are also smoothed with Gaussian kernels of σ =

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

1:16 • E. Kalogerakis et al.

1, 2, 3, 5. We also include the corresponding gradient magnitude,
the maximum and minimum curvature of �V · �N and �L · �N features,
yielding 24 more features. We finally include the depth value for
each pixel.

We finally include the per-pixel intensity of occluding and sug-
gestive contours, ridges, valleys, and apparent ridges extracted by
the rtsc software package [Rusinkiewicz and DeCarlo 2007]. We
use 4 different thresholds for extracting each feature line (the rtsc
thresholds are chosen from the logarithmic space [0.001, 0.1] for
suggestive contours and valleys and [0.01, 0.1] for ridges and appar-
ent ridges). We also produce dilated versions of these feature lines by
convolving their image with Gaussian kernels with σ = 5, 10, 20,
yielding in total 48 features.

Finally, we also include all the aforesaid 301 features with their
powers of 2 (quadratic features), −1 (inverse features), −2 (in-
verse quadratic features), yielding 1204 features in total. For the
inverse features, we prevent divisions by zero, by truncating near-
zero values to 1e − 6 (or −1e − 6 if they are negative). Using these
transformations on the features yielded slightly better results for
our predictions.

C. ORIENTATION FEATURES

There are 70 orientation features (θ) for learning the hatching and
cross-hatching orientations. Each orientation feature is a direction
in image-space; orientation features that begin as 3D vectors are
projected to 2D. The first six features are based on surface principal
curvature directions computed at 3 scales as before. Then, the next
six features are based on surface local PCA axes projected on the
tangent plane of each vertex corresponding to the two larger singular
values of the covariance of multiscale surface patches computed as
earlier. Note that the local PCA axes correspond to candidate local
planar symmetry axes [Simari et al. 2006]. The next features are:
�L × �N and �V × �N . The preceding orientation fields are undefined
at some points (near umbilic points for curvature directions, near
planar and spherical patches for the PCA axes, and near �L · �N = 0
and �V · �N = 0 for the rest). Hence, we use globally-smoothed
direction based on the technique of Hertzmann and Zorin [2000].
Next, we include �L, and vector irradiance �E [Arvo 1995]. The
next 3 features are vector fields aligned with the occluding and
suggestive contours (given the view direction), ridges, and valleys
of the mesh. The next 16 features are image-space gradients of the
following scalar features: ∇(�V · �N), ∇(�L· �N), ambient occlusion, and
image intensity ∇I computed at 4 scales as before. The remaining
orientation features are the directions of the first 35 features rotated
by 90 degrees in the image-space.

D. BOOSTING FOR REGRESSION

The stroke orientations as well as the thickness, intensity, length,
and spacing are learned with the gradient-based boosting technique
of Zemel and Pitassi [2001]. Given input features x, the gradient-
based boosting technique aims at learning an additive model of the
following form to approximate a target property. We have

τ (x) =
∑

k

rkψσ (k)(x), (17)

where ψσ (k) is a function on the k-th selected feature with index σ (k)
and rk is its corresponding weight. For stroke orientations, the func-
tions are simply single orientation features: ψσ (k)(v) = vσ (k). Hence,
in this case, the preceding equation represents a weighted combi-
nation (i.e., interpolation) of the orientation features, as expressed

in Eq. (7) with rk = wσ (k). For the thickness, spacing, intensity, and
length, we use functions of the form: ψσ (k)(x) = log(akxσ (k) + bk),
so that the selected feature is scaled and translated properly to match
the target stroke property, as expressed in Eq. (9) with rk = ασ (k).

Given N training pairs {xi , ti}, i = {1, 2, . . . , N}, where ti are
exemplar values of the target property, the gradient-based boosting
algorithm attempts to minimize the average error of the models of
the single features with respect to the weight vector r.

L(r) = 1

N

N∑
i=1

(
K∏

k=1

rk
−0.5

)
exp

(
K∑

k=1

rk · (ti − ψk(xi))
2

)
(18)

This objective function is minimized iteratively by updating a set
of weights {ωi} on the training samples {xi , ti}. The weights are
initialized to be uniform, that is, ωi = 1/N , unless there is a prior
confidence on each sample. In this case, the weights can be initial-
ized accordingly as in Section 5.1. Then, our algorithm initiates the
boosting iterations that have the following steps.

—for each feature f in x, the following function is minimized:

Lf =
N∑

i=1

ωi

(
r−0.5
k exp (rk(ti − ψf (xi)))

2
)

(19)

with respect to rk as well as the parameters of ak, bk in the
case of learning stroke properties. The parameter rk is optimized
using Matlab’s active-set algorithm including the constraint that
rk ∈ (0, 1] (with initial estimate set to 0.5). For the first boosting
iteration k = 1, rk = 1 is used always. For stroke properties,
our algorithm alternates between optimizing for the parameters
ak, bk with Matlab’s BFGS implemenation, keeping rk constant
and optimizing for the parameter rk , keeping the rest constant,
until convergence or until 10 iterations are completed.

—the feature f is selected that yields the lowest value for Lf , hence
σ (k) = arg min

f

Lf .

—the weights on the training pairs are updated as follows.

ωi = ωi · r−0.5
k exp (rk · (ti − ψσ (k)(xi)))

2 (20)

—The ωi = ωi/
∑

i ωi are normalized so that they sum to 1.
—the hold-out validation error is measured: if it is increased, the

loop is terminated and the selected feature of the current iteration
is disregarded.

Finally, the weights rk = rk/
∑

k rk are normalized so that they sum
to 1.

ACKNOWLEDGMENTS

The authors thank Seok-Hyung Bae, Patrick Coleman,
Vikramaditya Dasgupta, Mark Hazen, Thomas Hendry, and
Olga Vesselova for creating the hatched drawings. The auhtors
thank Olga Veksler for the graph cut code and Robert Kalnins,
Philip Davidson, and David Bourguignon for the jot code. The
authors thank Aim@Shape, VAKHUN, and Cyberware reposi-
tories as well as Xiaobai Chen, Aleksey Golovinskiy, Thomas
Funkhouser, Andrea Tagliasacchi and Richard Zhang for the 3D
models used in this article.

REFERENCES

ARVO, J. 1995. Applications of irradiance tensors to the simulation of non-
lambertian phenomena. In Proceedings of the SIGGRAPH Conference.
335–342.

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

Learning Hatching for Pen-and-Ink Illustration of Surfaces • 1:17

BARLA, P., BRESLAV, S., THOLLOT, J., SILLION, F., AND MARKOSIAN, L. 2006.
Stroke pattern analysis and synthesis. Comput. Graph. Forum 25, 3.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape matching and ob-
ject recognition using shape contexts. IEEE Trans. Pattern Anal. Mach.
Intell. 24, 4.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning. Springer.
BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approximate energy min-

imization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 11.
COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S., FINKELSTEIN,

A., FUNKHOUSER, T., AND RUSINKIEWICZ, S. 2008. Where do people draw
lines? ACM Trans. Graph. 27, 3.

DECARLO, D. AND RUSINKIEWICZ, S. 2007. Highlight lines for conveying
shape. In Proceedings of the NPAR Conference.

ELBER, G. 1998. Line art illustrations of parametric and implicit forms.
IEEE Trans. Vis. Comput. Graph. 4, 1, 71–81.

FREEMAN, W. T., TENENBAUM, J., AND PASZTOR, E. 2003. Learning style
translation for the lines of a drawing. ACM Trans. Graph. 22, 1, 33–46.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 2000. Additive logistic re-
gression: A statistical view of boosting. Ann. Statist. 38, 2.

GOODWIN, T., VOLLICK, I., AND HERTZMANN, A. 2007. Isophote distance: A
shading approach to artistic stroke thickness. In Proceedings of the NPAR
Conference. 53–62.

GUPTILL, A. L. 1997. Rendering in Pen and Ink, S. E. Meyer, Ed., Watson-
Guptill.

HAMEL, J. AND STROTHOTTE, T. 1999. Capturing and re-using rendition styles
for non-photorealistic rendering. Comput. Graph. Forum 18, 3, 173–182.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND SALESIN, D. H.
2001. Image analogies. In Proceedings of the SIGGRAPH Conference.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M. 2002. Curve
analogies. In Proceedings of the EGWR Conference.

HERTZMANN, A. AND ZORIN, D. 2000. Illustrating smooth surfaces. In
Proceedings of the SIGGRAPH Conference. 517–526.

HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. 2001. Topol-
ogy matching for fully automatic similarity estimation of 3d shapes. In
Proceedings of the SIGGRAPH Conference.

JODOIN, P.-M., EPSTEIN, E., GRANGER-PICHÉ, M., AND OSTROMOUKHOV, V.
2002. Hatching by example: A statistical approach. In Proceedings of the
NPAR Conference. 29–36.

JORDAN, M. I. AND JACOBS, R. A. 1994. Hierarchical mixtures of experts and
the em algorithm. Neur. Comput. 6, 181–214.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges for line
drawing. ACM Trans. Graph. 26, 3.

KALNINS, R., MARKOSIAN, L., MEIER, B., KOWALSKI, M., LEE, J., DAVIDSON,
P., WEBB, M., HUGHES, J., AND FINKELSTEIN, A. 2002. WYSIWYG NPR:
Drawing strokes directly on 3D models. In Proceedings of the SIGGRAPH
Conference. 755–762.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010. Learning 3d mesh
segmentation and labeling. ACM Trans. Graph. 29, 3.

KALOGERAKIS, E., NOWROUZEZAHRAI, D., SIMARI, P., MCCRAE, J., HERTZ-
MANN, A., AND SINGH, K. 2009. Data-Driven curvature for real-time line
drawing of dynamic scenes. ACM Trans. Graph. 28, 1.

KIM, S., MACIEJEWSKI, R., ISENBERG, T., ANDREWS, W. M., CHEN, W., SOUSA,
M. C., AND EBERT, D. S. 2009. Stippling by example. In Proceedings of
the NPAR Conference.

KIM, S., WOO, I., MACIEJEWSKI, R., AND EBERT, D. S. 2010. Automated
hedcut illustration using isophotes. In Proceedings of the Smart Graphics
Conference.

KIM, Y., YU, J., YU, X., AND LEE, S. 2008. Line-Art illustration of dynamic
and specular surfaces. ACM Trans. Graphics.

LIU, R. F., ZHANG, H., SHAMIR, A., AND COHEN-OR, D. 2009. A part-aware
surface metric for shape analysis. Comput. Graph. Forum 28, 2.

LUM, E. B. AND MA, K.-L. 2005. Expressive line selection by example. Vis.
Comput. 21, 8, 811–820.

MERTENS, T., KAUTZ, J., CHEN, J., BEKAERT, P., AND DURAND., F. 2006.
Texture transfer using geometry correlation. In Proceedings of the EGSR
Conference.

PALACIOS, J. AND ZHANG, E. 2007. Rotational symmetry field design on
surfaces. ACM Trans. Graph.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-Time
Hatching. In Proceedings of the SIGGRAPH Conference.

RUSINKIEWICZ, S. AND DECARLO, D. 2007. rtsc library. http://www.cs.
princeton.edu/gfx/proj/sugcon/.

SAITO, T. AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-D shapes.
In Proceedings of the SIGGRAPH Conference. 197–206.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND SALESIN, D. H. 1994.
Interactive pen-and-ink illustration. In Proceedings of the SIGGRAPH
Conference. 101–108.

SHAPIRA, L., SHALOM, S., SHAMIR, A., ZHANG, R. H., AND COHEN-OR, D.
2010. Contextual part analogies in 3D objects. Int. J. Comput. Vis.

SHOTTON, J., JOHNSON, M., AND CIPOLLA, R. 2008. Semantic texton forests
for image categorization and segmentation. In Proceedings of the CVPR
Conference.

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A. 2009. Textonboost for
image understanding: Multi-Class object recognition and segmentation by
jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81, 1.

SIMARI, P., KALOGERAKIS, E., AND SINGH, K. 2006. Folding meshes: Hierar-
chical mesh segmentation based on planar symmetry. In Proceedings of
the SGP Conference.

SINGH, M. AND SCHAEFER, S. 2010. Suggestive hatching. In Proceedings of
the Computational Aesthetics Conference.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments.
In Proceedings of the SIGGRAPH Conference. 527–536.

TORRALBA, A., MURPHY, K. P., AND FREEMAN, W. T. 2007. Sharing visual fea-
tures for multiclass and multiview object detection. IEEE Trans. Pattern
Anal. Mach. Intell. 29, 5.

TU, Z. 2008. Auto-context and its application to high-level vision tasks. In
Proceedings of the CVPR Conference.

TURK, G. AND BANKS, D. 1996. Image-Guided streamline placement. In
Proceedings of the SIGGRAPH Confernce.

WAGSTAFF, K., CARDIE, C., ROGERS, S., AND SCHRÖDL, S. 2001. Constrained
k-means clustering with background knowledge. In Proceedings of the
ICML Conference.

WINKENBACH, G. AND SALESIN, D. 1994. Computer-Generated pen-and-ink
illustration. In Proceedings of the SIGGRAPH Conference. 91–100.

WINKENBACH, G. AND SALESIN, D. 1996. Rendering parametric surfaces in
pen and ink. In Proceedings of the SIGGRAPH Conference. 469–476.

ZEMEL, R. AND PITASSI, T. 2001. A gradient-based boosting algorithm for
regression problems. In Proceedings of the Conference on Neural Infor-
mation Processing Systems.

ZENG, K., ZHAO, M., XIONG, C., AND ZHU, S.-C. 2009. From image parsing
to painterly rendering. ACM Trans. Graph. 29.

Received October 2010; revised June 2011; accepted July 2011

ACM Transactions on Graphics, Vol. 31, No. 1, Article 1, Publication date: January 2012.

